Cours spécialisé (GA, TN)
Contact : yves.andre à imj-prg.fr
Pas de notes de cours prévues.
Autrefois, l'algèbre commutative était l'étude des anneaux commutatifs et de leurs idéaux (Krull). Sous l'impulsion de Serre et d'Auslander, elle a muté en étude homologique des modules sur les anneaux commutatifs, qui s'est structurée depuis un demi-siècle autour d'une série de conjectures dites homologiques (Peskine, Szpiro, Hochster) éclairant les problèmes de singularités et d'intersections.
Ces conjectures sont établies depuis longtemps lorsqu'on dispose d'un corps de base, mais elles n'ont été démontrées que tout récemment dans le cas général, grâce à des
idées issues de développements récents de la théorie des nombres: la théorie
perfectoïde.
Le but du cours est de faire un tour d'horizon des conjectures homologiques en algèbre commutative, de présenter les algèbres perfectoïdes (Scholze et al.) et d'expliquer leur intervention dans la preuve de ces conjectures (la théorie perfectoïde a beaucoup d'autres applications auxquelles on fera peut-être allusion si le temps le permet).